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Pattern formation for NO+NH 3 on Pt(100): Two-dimensional numerical results
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The Lombardo-Fink-Imbihl model of the NO +NHeaction on a F100) surface consists of seven coupled
ordinary differential equation§ODE) and shows stable relaxation oscillations with sharp transitions in the
relevant temperature range. Here we study numerically the effect of coupling of these oscillators by surface
diffusion in two dimensions. We find different types of patterns, in particular phase clusters and standing
waves. In models of related surface reactions such clustered solutions are known to exist only under a global
coupling through the gas phase. This global coupling is replaced here by relatively fast diffusion of two
variables which are kinetically slaved in the ODE. We also compare our simulations with experimental results
and discuss some shortcomings of the model.
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I. INTRODUCTION d

. . . _X: f(xu prT)l X € J[{71 f = (fl’ e ’f7)’ (1)
Pattern formation on catalytic surfaces has been intensely dt

studied in recent years with most studies focusing on twg,,

; . S : herep e R is a vector of temperature independent param-
reaction systems, catalytic CO oxidation and catalytic Ny g Moreover(1) contains 11 rate constants depending by

e Arrhenius law on temperatufié which we therefore dis-

platinum and rhodium single crystal surfaces. (state- lay explicitly. In p there are two externdtunable param-
dependentanisotropy of surface diffusion, global coupling, 2te¥s prl:o a)rqd Dr:)H acting as driving forces anpd corre-
and adsorbate-controlled surface phase transitions added fea_on(’jing ,to a cons%élnt supply of NO and Mkespectively

tures to chemical reactions and led to phenomena in patter
rom the gas phase.

formation not known in liquid phase reactions; for general The ODE(1) has periodic solutions in a parameter range

background and reviews see Refb-d]. similar to the experiment. However, the oscillationginare
The catalytic reduction of NO with NHto the products P ; .
more anharmonic than in the experiment. In Sec. Il A we

N2 and KO on a Pt100 surface has been studied experi- plot typical periodic orbits of1), but we will not repeat in

mentally in Refs[5,6], including photoemission electron mi- ; . : s .
croscopy(PEEM) images showing the spatiotemporal behav-deta" the properties of this ODE; see the Appendix for the

ior of the reaction. This catalytic surface reaction involvesequlat'c.ms’]c ?ndHRefsU,S] for. dd|sc|_ussmn an(?_ nur‘r]letr;]cal
the adsorption of the reactants at the surface, dissociation a aEy S(I)SS((:JiIIEBIt)c; s et:e VSVSrf(;C():I;SI dit:;fruslirl)enarir(]:o:,\?ol_rl d?moensigrsé
reaction on the surface, and desorption of the products fro D). i.e., we stud ythe reaction-diffusion svstem
the surface. Additionally, the B00) surface can switch be- T y y
tween two substrate configurations, the catalytically active d : _
1X1 phase with a bulklike surface termination and a cata- aX(t,i) = fX(tX):p.T) + MMAX(LX), 2)
lytically inert quasihexagonal reconstructed ph&%eex”).
The stable state of the clean(FQ0) surface is the hex re- WhereM(T) is the diagonal diffusion matrix depending by
construction but above a critical adsorbate coverage thgéhe Arrhenius law o and the diffusion energids. Depend-
1X 1 phase is more stable and the reconstruction is lifteding on the parameters we find a rich variety of spatio-
Thus an adsorbate-induced<l < hex phase transition is temporal patterns by direct numerical integration@t Our
constituted, and for temperatures around 440 K and at lowvork then has the following two goalga) to present ex-
pressure(@about 10° mbay the catalytic conversion process amples of the interesting patterns f(2) and thus give a
proceeds in a periodic way. motivation and some starting points for the analysiq2)f
A realistic model for NO+NH on P{100) has been set from an abstract pattern formation point of view, &l to
up in Ref. [7]. It consists of seven coupled ordinary assess the quality of modé&) and to identify realistic pa-
differential ~ equations (ODE) for the variables rameters for the diffusion energies(®) by comparison with
NG O Buxa, O 05 0, 0, which denote, in that  PEEM images and further data from experimg].
order, the local coverages of NO on thec1 phase, of NO The diffusion energie€ are not external parameters in
on the hex phase, the fractiafj,; of the surface in X1  the experiment. Nevertheless we focus on the dependence of
phase, and the 'OC"?" coverages of NK, N, and H on the (2) onE, i.e., we chang@(T) independent off, sinceE is
1x1 phase. We write the ODE in abstract form as known only rather roughly from experiment or first prin-
ciples. We also study the temperature dependencé€)of
which shows a shortcoming of the model and suggests that a
*Electronic address: hannes.uecker@math.uni-karlsruhe.de  global coupling should be introducésee latex. The remain-
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ing (ODE) parameters, in particular the partial pressusigs  back[11,23,24,27 have been used wontrol the pattern for-
and pyy., are kept fixed. mation in this system. In Ref28] a condensed model of
The model(2) has been studied in one dimensid) in surface catalysis with long range coupling has been studied
Ref.[9]. There the patterns were classified into four groupsby direct numerical simulation and an extremely rich variety
(see Sec. II D for illustration bulk oscillations(BO), phase  of cluster patterns has been obtained. See also s3]
clusters(PO), standing wave$SW), and phase wavd®W). for experimental results on clustering in the Belousov-
Even in 1D a systematic study of the dependence of th&habotinsky with global feedback and a model of this prob-
patterns on the parameters and the initial conditions is hardem with two dimensional kinetics.
In 2D, additional geometric effects play an important role The ODE(1) can also be reduced to a three dimensional
and for SW and PC lead to metastable patterns and very lorgystem
transients. Of course, numerics also becamgriori much

1x1
more expensive in 2D. q o
Bulk oscillations means that the whole surface oscillates —y=9g(y;p,T), y=| &3 |, (3)
. . . . . dt NO
homogeneously in the limit cycle dfl), while in both PC P
and SW the oscillations are organized into macroscopic areas Pl
(clusters in such a way that the phase changes from one area FLOVL B 0 hiy)]
to the next in a regular way, with phase shifts of half a 1LONo » Ny O, Y
period. The difference between PC and SW is that in SW the aly) = fz[ahél, Nos O1x1,h(Y)] |,
phase pattern has an intrinsic spatial wave length, while in f[ 6L X 9. h(y)]
3LOno » Onos Orx, Y

PC the clusters have no intrinsic size and grow until the
whole domain is split into only two clusters. Here we follow for the slow variabley by elimination of the fast variables
[10-13 in the terminology, but also loosely term both SW z=(6yy:, 65", 6", 0" [8]. The reduction of dimension
and PC as clustering. The clustering requires substantial déa (3) is of course advantageous both analytically and nu-
viations from the periodic ODE orbits at the cluster bound-merically. Naively, we may then study the reaction diffusion
aries. In contrast, PW means that the phase changgsoblem
smoothly and each oscillator is always close to the periodic

The transitions between the different regimes are rather dt " ¢

delicate. The system is most sensitive with respect to the . o 1x1 ~hex .
(relatively slow NO diffusion on the X1 and the hex With Myeq=diagDyo . Dyo,0). However, as already dis

. . . . cussed in Refl9], although the error betwedi) and(3) is
phase. This aglrxeles v(\a/xe” with the analysis in Réf.where it small, obviously all the influence of theelatively fas} dif-

is shown thatdys', Oyo, and é,x, are the “master” dynamic . . . )
variables for(1) (in the oscillatory regimewhile the remain- gf[ﬁ';n hO;n,(\jl F%haenilrm'ﬁalgs; 'gfgl(:i'r?gtig;?f;éjé do\?a:gebles
ing four are "slaved.” Howevew, ., does not diffuse, which .~ " 55" (2) can be done analytically only in special

ives NO diffusion its special importance. d . :
9 Of course. BO. PC pSW andpP\Mnd the competition cases, see, e.g., R¢B2], and numerically yields little ad-
! : ' ' vantage.

between these pattejrare also interesting from a theoretical . .
point of view. Phase waves for oscillators close to a Hopf Note that(4) corresponds td2) in the limit Dyyy,, Dy

point can be analyzed using phase diffusion equations: sea 0. We find that no clustering occurs in this limit or even for

e.g., Refs[14—16. However, relaxation oscillators may be- rélatively slow diffusion of NH and H. This has two conse-

have quite differently undefweak coupling than harmonic 4U€Nces: -
oscillators [17-19; in particular, under certain conditions (1) it means that to study the model for realistic values of
phase waves cease to exist; see R@f.for discussion and M(T) we must simulate the full systef®);” and
further references. On the other hand, SW can be generated (2) more importantly, it shows that, additional to the re-
in simple reaction-diffusion systems via the so called wave@xation type of the oscillations, key ingredienfor cluster-
bifurcation [20—24. This, however, again corresponds to a!Nd in (2) is anonlocal (or long rangg coupling due to fg'la'
(roughly) harmonic time(and spacedependence. tively fast diffusion of the kinetically slaved vanabl@é,H3

In surface catalysis, clustering has been intensively studand 9ﬁ“-
ied for the CO oxidation on Pt10), both experimentally and ~ The most important difference between 1D and 2D are
theoretically [10-13,23-26 Here the reaction-diffusion curvature effects. One result is that ttmntrivial) clustered
models have considerably simpler ODE dynamics ttfgn ~ solutions presented here do not become strictly periodic dur-
(three dimensional or, in a refined version, four dimensipnal ing simulation time. Instead, these solutions becaraarly
but additional to the surface diffusion there iglabal cou-  periodic this means that the antiphase oscillations of well
pling through the gas phase in the spatially extended system.

Moreover, external forcing13] and/or global delayed feed- 2 rhe kinetically slaved and immobile variablé§‘® and 65" can

- be eliminated fron{2) as long as the solution is sufficiently close to

A typical simulation of 4000 s of simulated system time on the periodic ODE orbit at each point in space, which is more and
128x 128 grid points runs about 100 h on a 2.4 GHz Pentium 4more violated the more complicated the solutions become. In any
machine with 512 MB RAM and similar machines, see Sec. Il C. case, the speedup is small.
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defined clusters can be observed over mé@DRE) periods, X 10°® mbar andoyy,=4.7X 10°% mbar, as in Ref.7]. In (a)
but the boundaries or nodal lines between the clusters slowlye present all seven dynamic variables, while shows
drift. There are also solutions f@z) in which SW in annular the Chemica”y interesting production rateer2
shape initially develop. These look similar to target patterns_ 1x1\2 — 1x1 1% 1
Hovxrl)ever thgy are unpstable and depending on ggompetric co_-o'a\lskg(aN )/ 61x1 OF N and 141,0=Nkgfo “0hi "/ 11

VD . ) - COt 11,0, whereN.=1.3x 10 cn2 is the concentration of
straints like the domain size, they either relax to quasi-1D

SW in a long transient process or evolve into irregular SWS;Jg]aCG S|tes]; ;Il'he mgst |mpqrtcejm_t fj‘?”.g'“j"?”ts Ecrom Refs.
In contrast, in 1D in the same parameter regimes all squtionIS 0] aré as Tollows. Lne period IS divided into four Seg-
ents. We plot, «, first since the decay of,.;, in segment

are quite regular and eventually become periodic, which ma i X
include periodic changes of the cluster boundaf@Esillat- sets the slowest time scale in the largest segment; here all
ing phase clusteJs other variables followt;, , adiabatically. This breaks down
An important effect of the clustering is that it reduces thein segment 2, where adsorbtion of NO starts the -hex
periods of oscillations of macroscopice., spatially aver- X1 phase transformation in segment 3. In segment 4 the so
aged quantities by a factor ofroughly) 2. Moreover, while  called, “surface explosion” occurs with a rapid production of
(1) has relaxation oscillations with sharp transitions, the avN, and HO. The NH, ,¢/H,q layer built up this way is un-
eraged quantities oscillate more harmonically. Both effectsible to stabilize the X 1 phase, and the process repeats with
together yield a better agreement of averaged quantities fahe slow relaxation to the hex phase in segment 1.
the model with experimental datf7], Figs. 7 and 8 How- The temperature dependence is illustrated(éh For
ever, thespatidemporal agreement a) with the experi- lower T the (average fraction 6;,, of the 1X1 phase in-
mental result$6] is not satisfying. By properly adjusting the creases, while the amplitude of the oscillations and the reac-
relative magnitude of the diffusion constants within chemi-tion rates decrease, and vice versa for highéfhe period,
cally realistic ranges we do get patteiissanding waveson  also depends off but only slightly in the middle of the
comparable spatial scales, but the temperature dependencedgfci"atory regime considered here. We hat420 K)

the model does not match the experimental dsé below.  _ g7 5 Below the lower thresholfl =404 K) for oscilla-
Moreover, in Ref[6] the observed patterns have been ex-

plained in terms of front dynamics, while in the model SW tions the surface is completely |n~the><Jl phase(f;,,=1),
and PC dominate for realistic values of the diffusion con-WhIIe above the upper thresho(@~433 K) 'F Is in the hex
stants. As noted, mathematically one should make a cledi@5€(61x1=0). In both cases, the production ratgg and
distinction between phase dynamié®nts) where every os- Tn,0 are zero. For the reaction diffusion proble@ two
cillator is always close to the ODE limit cycle, and clusteredobservations from Fig. 1 are most important: the smaller
patterns where this is not true at the cluster boundaries. Iflargey amplitudes at lower(highen temperatures yield
Sec. Il F we shall argue that in fact the distinction is moresmaller(largep spatial gradients for oscillators with shifted
gradual in the mode(2). In particular, there are still local phases, and the transitions become léssre sharp for
front dynamics within “clusters of equal phase.” These localower (highep T; see Ref[9] and Sec. III D.
fronts then reproduce qualitatively the front dynamics seen
in the PEEM image$6], though the front speed is too fast o
(roughly by a factor of 1Din our simulations. B. The diffusion constants

The most serious shortcoming of the model is a reversed Surface diffusion constants are difficult to measi88].
temperature dependence of the spatial pattern size. In a nuytor the diffusion constants for @00/H,N,O,NO,NH;
shell, increasingr in (2) decreases the spatial scale of the\e follow the arguments given in Refi9], based on Ref.
patterns, while in the experiment it is the other way round.[35,36|_ In the temperature range considered here, O and N

We note again that there i global gas-phase coupling e considered immobile. As usual, we approximate the re-
(2), although it most likely plays an important role in the =

experiment. In particular, bulk oscillations at higrand the ~ Maining D; using the Arrhenius-lawD;=ve5"T, where
gradual failure of long range synchronization at lowlein ~ R=8.3144 JK*mol is the universal gas constant,
the experiment are attributed to the global gas-phase cou=0.001 crds™ is a common prefactor, anf, is the acti-
pling at highT and its breakdown at lowér [33]. It remains  vation energy for diffusion of the respective species. This
to be seen if the inclusion of such a global coupling i@  yields the data in Table |, which, however, should be seen as
will improve the temperature dependence of the model.  rough estimate only, hence, as a starting point for the numeri-
The remainder of this work is organized as follows. Thecg| simulations.

preparatory Sec. Il contains remarks on the periodic orbitS The diffusion constants differ quite significantly in mag-
for (1), the diffusion constants, the numerical method, andityde: diffusion of NQ.; and NG, is relatively slow and

the choice of initial conditions and domain size {@. In that of H and NH relatively fast. In this senséstrictly
Sec. Il we present our results. Conclusions are summarizeébeaking foDlxlzDhex_o) (2) is related to the model prob-

. . . . . NO NO™
in Sec. IV, while the Appendix contains the ODB. Movies o in Ref.[37] where a field of oscillators is coupled by
and additional simulations are available via interf8].

diffusion through a passive medium. In Sec. Il we find that

Il. THE SETUP the “typical pattern size'l, for (2) at T=420 K is of the
o _ order of 0.01 cm. HenceDyy,7=2.4X 10°%cm and
A. The periodic ODE orbits VDy7=1.8X 102 cm, wherer=1 s is our time scale, are

Figure 1 shows periodic orbitsy(T) for (1) at T  roughly of the magnitude ak, and diffusions oféyg and
=410,420,430 K. The partial pressures apmo=1.1 aﬁ,“introduceanonlocal but also nonglobal coupling, where
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FIG. 1. (a) periodic ODE orbits aff=420 K, (b) production
rates aff=420 K, (c) Oho’, 00, O1x1,
in s, the fractiond,» 1 of the surface in the X 1 state is dimension-
ML=monolayergwimber of adsorbed
molecule$/ (number of free sites on the surfac&uantities from
these ODE orbits will henceforth be referred to as, effor, and

the unit for coverage&ML ) will be omitted for convenience.
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TABLE I. Diffusion energies and constants. For convenience we

write Ez(E,{lél,ER%‘,ENH3,~EH). NA means not applicable.

_ Value at

E 420 K
Process Parameter (kJ mol?d) (cmés™t
NO diffusion (1 1) D,=Dy 28 3.3x1077
NO diffusion (hex) D,=Dh% 24 1x 107
NA D3=0 NA Always=0
NHj diffusion D4=Dy, 15 1.4x10°°
O diffusion D5=Dg Setto 0
N diffusion Dg=Dy Setto 0
H diffusion D,=Dy 18 5.7x 1076

local (globa) coupling would correspond to\Dyy,7
<|p(\“”DNHsT>|p)'

C. Numerical method and choice of initial conditions
and system size

To discretize(2) we choose a system size and consider
nxn oscillators X(-,i,j) =X(-,x,y;) at (x,y;)=(i6,j9), i,j
=1,...n, 6=L/(n-1), with periodic boundary conditions.
The numerical scheme is the same as in R&#f.a split-step
method, where the ODE part is integrated using the linearly
implicit solver limex ([38], Sec. 6.4 (available online at
www.zib.de/SciSoft/CodeLib/ivpode.en.htmdnd the linear
PDE-part(d/dt)yX=MAX using an implicit Fourier spectral
method. In our simulations we us&=0.0005 cm and the
average effective time steps are abdt#0.001—-0.01 gde-
pending on the parametergonvergence s was checked
by reducingé by a factor of 2 and comparison.

The initial conditions for(2) were chosen as localized
perturbations of the point

Z,=(0.03,0.24,0.22,0.% 10°%,0.01,0.02,0.20

which is roughly near the end of segment 1 of the periodic
orbit y(420), cf. Fig. 1. That means, we first assign
X|i=o(i,})=Z, to all oscillators, then chooskes {0, ..., 7%
andae R, and add a perturbation of amplitudeto theIth
component in part of the domain. In formulas, we set

. Jz+a, ()eT
Xile=o(i, 1) = (5)
7z, elsewhere,

whereZCN? is an index set. For some<n we setZ=7,
={(i,j):0=<i,j=<Kk}, i.e., we perturb in a square in the upper
left. The BO solutionXgg is asymptotically stable in the
parameter regime given by Table I. Hence,(f) we need
sufficiently largek and/ora, depending orl, to push the
system at least transiently away frogo. As should be
expected from the ODE reductiof8), the easiest way to
perturb the system away frolgg is to introduce perturba-
tions in 655", BheX or 6,4, i.e., to choosé e {1,2,3. For the
sake of brevity we restrict to perturbations #hy; (1=3).
Note that this way we add a perturbation to a nondiffusive
component and, hence, the system can only be driven back to
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or further away fromXgg by coupling to the diffusive com- pLX1
ponents.
We also use random initial conditions in the form

Xil=o(i,]) =112, (6)

where eaclr; ;, is a (pseudgrandom number between 0.5
and 1.5. Choosing a new, for each(i,j) tends to yield
BO. Hence, the initial data waseclusteredby choosing the
samer; ;; on squares of certain side lengtips
The experimental data in Ref6] was reported for a
sampled area of about 1 mMpwhile the PEEM images show
circular areas of about 0.5 mm diameter. Here we nse
=128 in most simulations, hencé,=(n-1)5=0.635 mm,
which is comparable to the size of the PEEM images. We
also show some simulations with=64 and one withn
=256 to illustrate the influence of the system size which
unlike in the 1D case plays an important role in 2D. Besides
faster computation the advantage of smaller domains lies in
shorter transient behavior. However, this may also introduce 0 ts] 750
artificial constraints, see Sec. Ill E. Usimg-128 is a good
choice to obtain meaningful results in acceptable computa- (d)
tion time. ‘ '
We focus on plottingd; «4(t,x,y) as the main diagnostic
for (2). As explained in Sec. Il A, the decay 6f.; sets the
timescale in the largest segment 1 of the ODE-orbits. Hence, 0 t[s] 750
for the reaction-diffusion problem we expect that for given
011 the remaining variables can roughly be read from Fig. _
1, at least at values in segment 1 of the ODE orbit. This turng _FIG- 2. Examples from Ref9] for BO, PC, SW, and PW in 1D.
out to be trud9]. To visualize the spatiotemporal patterns we =420 K, greyscale plots afy,(t,x) [and o (t,x) in (a)], hori-
use 2D plots of 6, at fixed time, and space-time zontal axist, vertical axisx, spatial size.=0.395 mm. The param-
plots of 8;.; along a diagonal through the 2D domain. These€ters are E=(28,24,15,1f&J mol™* in (a),(b); E=(30,22,15,
plots are further complemented with diagnostics like 18kJmol? in (c), E=(28,22,25,25J mol* in (d). (a) Stable
local time series and the spatial averad®,.q)(t) BO: small initial perturbation is quickly repairedb) PC: larger
:(1/n2)2inj:161><1(t1i ). initial perturbation yields phase clusters that split the domain into
' two halfs.(c) SW: clustering with intrinsic spatial lengtld) PW:
o smooth phase changes. (b)—(d), as in the figures to follow, in
D. Classification in 1D order to avoid overcrowded pictures we do not repeat the spatial
In F|g 2 we show greysca'e p|ots from Rw] illustrat- sizeL in the plots if it is the same as in the previous frame. Simi-
ing BO, PC, SW and PW in 1D§=0.005 mmn=80, hence, larly, all greyscale plots show;.; unless noted otherwise.
spatial sizd_=0.395 mm, where the initial conditions are the
1D analog of(5). The solutions in(a),(c), and (d) become A. Phase clusters
perfectly periodic after a rather short time transient. The PC In our first simulation we us&€=420 K, the diffusion data
solution in (b) shows oscillations of the cluster boundaries.from Table I,n=128, hencel.=0.635 mm, and initial con-
However, these oscillations are much smaller than in 2D; seditions according td5) with k=16 anda=0.1. This yields a

later. 2D PC solution. Figure @) shows snapshots @ (t, -) for
the initial evolution. The greyscales are linear interpolations
IIl. SIMULATIONS petwger!zmin:blackzo.z and,,,,=white=0.8; in the follow-
ing this is denoted bYs.a=Zmin: Zmax
We first present examples of different patterns Tat The larger value of9;; att=0 s in the top left corner

=420 K andL=0.635 mm. Temperature dependence and deslilutes the NO adsorption in thexl1 phase; in this way we
pendence on system size are discussed in Secs. Il D ardhibit the hex—1X 1 phase transition in this part of the
[l E later. We also start with a clear distinction between surface, which in the remaining part takes places araund
clustered solutiongPC and SWand phase dynamid®W), ~7 s. Then at=62 s, 6,,, has sufficiently decayed in the
while local phase dynamics within clustered solutions areop left corner for the hex: 1X 1 phase transition to start,
discussed in Sec. Il F. Finally, the patterns will be comparedvhile in the remainder of the domaify ., is still decaying
with experimental results in Sec. IV. along segment 1 of the ODE orbit. For largehis develops
The BO solution is asymptotically stable near the paraminto a PC solution: cluster 1 roughly sits in the top left corner
eter regime given in Table I. Therefore we directly start withof the domain while cluster 2 fills the rest of the domain.
a more interesting solution. Neart=750 s both clusters have about the same area. This
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(a)

0.635mm

t=0[s] t=20 t=70 t=120 t=170 t=220 t=270
(b) (B1x1)(t), O1x1(t, #1) (dashed), 0D () (dots) (c) (B1x1)(?)
i : - - o.e
i\\ :.“ - 0.4 H 3
o t[s] 1000 0.3000 :[Is] 3000

(d) (e) g
o ®
= S
t=1050[s] =2000 0 t[s] 2000
(f) O8NS, 2sca=0,0.37 OR, Zsca1=0.06, 0.28 ONT > Zscal=0,0.12

0.898mm

0 t[s] 1000 0 t[s] 1000 0 t[s] 1000

FIG. 3. Phase cluster$=420 K, domain sizé& X L with L=0.635 mm(n=128), E:(2§,24, 15,18J mol, initial data according t¢5)
with a=0.1,k=16. (a),(d) 6;x4(t, -). (6), (f) space-time plots along the diagoringth V2L) marked in the first frame ofa). The pointx;
for the local time series iffb) is the top left cornerzs.;=0.2, 0.8 in(a), (d), and(e).

can be seen from the full line itb) showing the spatial Panel(e) shows a space-time plot @, along the diagonal
average(6,«1)(t). Here we also plot the local time series marked in(a), while (f) shows three of the remaining com-
011(t,Xy) of the point in the top left corner ané,.; from  ponents. This illustrates that except at the nodal line between
the ODE solution. These two curves suggest that;ahe  the clusters the solution is always close to the ODE orbit,
solution is close to the ODE limit cycle. This can be checkedand how the clustering looks in these components.
by closer inspection of the solutions and is true for all points  Initial conditions according t¢5) have the advantage of
in the interior of a cluster; see al¢b. being well controlled, but they are also artificial. In Fig. 4 we
Unlike the 1D case, the areas of the two clusters do nouse the same parameters as before but now with random
become almost equal and constant in time. Instead, th@itial data according t¢6). Locally the initial data is quickly
boundary between the two clusters oscillates as illustrated isBmoothed out as can be seen from the first two framea)in
(c). In 1D, such oscillations of the cluster size are muchAt t=100 s the solution shows a number of clusters. The
smaller in amplitude and almost negligible for the presenfurther evolution first shows a coarsening process.
parameters. Hence, these oscillations must be attributed to At t=1000 s the domain is split into only two clusters of
curvature effects in 2D. Previewing Sec. Il E we remark thatalmost equal area. This configuration is remarkably stable: in
the oscillations become smaller on smaller domains. Howthe further evolution there is only a slow drift of the cluster
ever, also on smaller domains there is in general no phageoundaries, i.e., this solution isearly periodi¢c which can
balancing, i.e., the areas of antiphase clusters do not beconaéso be seen fror¥; ;) in (b). Similarly, the space time plot
equal. In(d) we show snapshots @& ., at times where clus- in (c) also indicates the rather slow adjustment of the cluster
ters 1 and 2 have become maximal in area, respectivelypoundaries already between500 s and=1000 s, though it
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(a) . ; (a) . . .

0.635mm
0.635mm

t=0[s] =100 t=970[s] =973 =976
_J \ | ¥ ¥
= 5 -\ / . bl 1
t=1000 t=1910 t=1960 t=979 t=982 t=985

(b)  (61x1)and 61x1(t, zl) (dashed) (b)  (f1x1)(t) and O1x1(t, 1) (dashed)

600 t[s] 1000

(©)

0.898mm

0 t[s] 1000

FIG. 4. Phase clusters for random initial dafe=420 K, L - Bh d ‘ | diff 11 1
=0.635 mm,E=(28,24,15,1%J moll, initial data according to G. 5. Phase dynamics for slower diffusion dﬁ' » O

(6) with q:8 (a) Snapshots Oplxl(tx ) (C) 01><l diagona| space- =420 K, E (28 24 30 3§kJ mol'l L=0.635 mm, |n|t|al data as
time plot. z.,=0.2, 0.8 in all greyscale plots. in Fig. 3. (8 61x1(t, ). (©) 1%y, diagonal space-time plokgy
=0.2,0.8 in all greyscale plots.

of course fails to capture the geometry of the solution. . ) S
Hence, in contrast to clustered solutions this situation should

be describable by pure phase modglst] Sec. IV).
Similar front dynamics are always obtained for large val-
Figure 5 gives an example of a PW. We again Use eg of~ENH3 and E, (small values ofDyy,. and Dy). We
=420 K and the same initial data as in Fig. 3 but nBw conclude that it is the nonlocal coupling by fast diffusion of
=(28,24,30,3J mol ™. Hence diffusion offy, and 6y Ko and 67! that prevents, for instance, the solutiontat
is now slower than that ofjy" and 6. At t=970 s in(@), =70 s in Fig. 3a) to trigger a similar front. Hence the fast
6, has started to grow in ' the top left corner. This triggers adiffusion of 01“ and 6 is one key ingredient for the
circular front which starts to spread. Ne&=976 s, 611 clustering
also increases in the middle of the domain. The front then
collides with this structure. Subsequentty., decreases
along segment 1 of the ODE orbit with a small phase gradi- C. Standing waves
ent throughout the domain. This can be clearly seen in the
diagonal space-time plot ift). For largert the profile along
the diagonal roughly keeps its shape. The time serigb)in

B. Phase waves

n Ref. [9] it was found that in 1D(in the clustering
reglme i.e., for largdDyy,, Dy) the diffusions of6ys" and

1x1
shows that(#,.,) is slightly smeared out by the PW com- o play the following roles: decreasm@mcreasmg Do
pared to the sharp transitions #7°F. (Em) may switch the system from P(Elustering with no

On larger domains we can also produce longer frontdntrinsic length scalgto SW (clustering with intrinsic length
which further smear out the transitions(ify ;) (see Ref[9] scalg and for SW decreases the spatial size of the clusters.
for 1D examples In PW, every oscillator is always quite Decreasindincreasing DR,%‘(E Q) acts the other way round.
close to the periodic ODE orbit(T=420 K), with some  See also Figs.(®) and Zc) for illustration in 1D. We now
small deviations only during the collisions of the fronts. illustrate the similar effect in 2D.
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t=1000 t=1400 t=1800

0 t[s] 1000

2000 t[s] 4000

FIG. 6. Irregular standing waves: T=420 K, E
=(30,22,15,18%J mol%, L=0.635 mm, initial data as in Fig. 8)
O1x1(t, -). (b), (¢) 61«4, diagonal space-time plotg.,=0.2,0.8 in
all greyscale plots.

In Fig. 6 we usel=420 K and the same initial conditions
as in Fig. 3, but nowE=(30,22,15,18%J mol'. The initial

PHYSICAL REVIEW E71, 016207(2005

t=3820[s]  t=3880  t=3940  t=4000

(2)

0.155mm

(b) (01X1>loc and 01><1(t, .’f1) (dashed)

)
3600 t[s] 4000

FIG. 7. Local clusters(a) 6,.4(t, -), magnification of the square
of side lengthL=0.155 mm(n=32) in the top left corner of the
simulation from Fig. 6 at large time,.,=0.2,0.8.(b) Time series,
where)0;«1)10c denotes the spatial average over the small square.

appears where the bands of equal phase have a width of
approximately 0.05-0.08 mm. Hence the clusters now have
an intrinsic spatial scale. Therefore this solution is called a
standing wave. This initial evolution can be nicely traced in
the space-time plat).

However, the circular SW is not stable. Therefore, trig-
gered by unavoidable numerical errors, for 1000 s the
solution gradually loses its symmetry and standing waves
appear in an irregular wathird row in (a)]. This continues
for large time and leads to the irregular space-time fibt
and to irregular small amplitude oscillations @ ;) (d).

In Fig. 7 we illustrate that locally this irregular regime
still shows antiphase clustering. The snapshotganare
blow-ups of the solution from Fig. 6 at large time in the
square of side length 0.155 mm in the top left corner, show-
ing antiphase oscillations of clusters with a spatial scale of
about 0.05 mm-0.08 m, while the full line i) shows the
local average 6;x1)ioc Over this part of the domain. We dis-
cuss the local dynamics of this solution again in more detalil
in Sec. Il F.

For the present parameters, i.eJ=420K, E
=(30,22,15,18%J mol'l, andL=0.635 mm, random initial
data as in Fig. 4 directly lead to irregular S\&4]. In 1D,
irregular SW do not existfor the present parametém=snd the
solution always evolves into a perfectly regular SW, also for
random initial conditions. Hence, the instability of the circu-
lar SW in Fig. 6 must be attributed to curvature effects.
There is, however, a strong dependence of the solution on the
2D domain size, see Fig. 9 in Sec. lll E: on smaller domains
the irregular SW may relax t@egula) quasi-1D SW. On the
other hand, on larger domains, larger circular 8ére an-
nuli) may develop from localized initial data before becom-
ing unstable. This suggests that the instability of the circular
SW comes from the collision of the SW with itself due to the

evolution looks roughly the same as for the original valuesperiodic boundary conditions.

E=(28,24,15,1%J mol't. However, for instance att

=410 s in(a) we see that now the top left corner itself starts

D. Temperature dependence

to split into annular clusters, similar to a target pattern. Like- In Fig. 8 we use the irregular solution &t2000 s from
wise, in the remaining part of the domain a banded structur&ig. 6 (T=420 K) as initial condition at lowefl while keep-
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t=2020 £=2200 t=2600 t=3400 t=4320 t=4370

(81x1) and 0PPE(T=415K) (dashed)

o.4 L 4 N
2000 t[s] 3500 3500 t[s]

(d)  (f1x1) and 69PE(T=410K) (dashed)

\ ]|

3000

t=2020]s] t=2600 t=2950 t=3000

FIG. 8. Temperature dependené;(30,22,15,1§kJ mol!, L=0.635 mm, initial data from=2000 in Fig. 6;T=415 K in (a), (b),
T=410 K in (c), (d). (@) #1x1(t, ), Zsca=0.3,0.8.(b) )#1x1) during transient and for nearly periodic solution, together V\Bﬁff(T
=415 K) (dashedl () 61x4(t, -), Zsca=0.4,0.9.(d) (fy1) for (c) and 6PPH(T=410 K). Lowering temperature leads to regular SW with a

larger spatial scale. The local dynamics of the solutiofe)meart=2600 s will also be discussed in Sec. Il F.

(a) o.5 -
£
2 54 !
(O1x1)
o.3 {
0 t[s] 1500 1500 t[s] 3000
b
®)g 1 o
= -
t=0[s] t=500 t=1000 g

t=2000 t=3000 t=4000

FIG. 9. Dependence on system siZe;420 K in all simulations{a) é=(28,24,15,18<.] morl?, L=0.315 mm, diagonal plot 0y,

and time serieg6;.1)(1). (b) E=(30,22,15,18%J mof?, L=0.315 mm(n=64), 6;.,(t, ). (c) E=(28,24,15,1%J mol%, L=1.275 mm
(n=256), #1x1(t, -). (a) corresponds to the simulation from Fig(BC) on a four times smaller domaifh)/(c) correspond to the simulation

from Fig. 6 on a four times smaller/larger domain.
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nates over BO and PW. In the clustering regime, the spatial
scale of SW decreasémcreasepswith increasing(decreas-
ing) temperature. As discussed in Sec. IV the temperature
dependence of the experiment is reverse.

Lowering temperature has two effects: it makes the peri-
odic ODE orbits less anharmonic, and it decreases diffusion.
t=2590]s] t=2600 £t=2610 To avoid the second effect we for instance reran the simula-
tion from Fig. 3 atT=415 K but with the diffusion constants
from T=420 K. This again gives BO. Hence, tkecond key
ingredient for the clusterings the relaxation type of the
ODE oscillations, which becomes sharper at largeiVe
remark that the numerics also become more difficult at larger
T and the model may fail due to violation of certain mass
t=2620 £=9630 £=2640 balances; see Rd9] for more detailsin the 1D casg

(2)

0.635mm

E. Dependence on system size

(b)

In 2D, the dependence on system size is much stronger
than in 1D. This is illustrated in Fig. 9. Ita) we again use
the parameters from Fig. 3 but withb=0.315 mm(n=64).
This again yields a PC but now with only small oscillations
t=4355[s] t=4360 t=4365 of the cluster boundaries, i.e., the solution becomes almost

perfectly periodic.
Panels(b) and(c) show the solution with the parameters

(c) from Fig. 6 on a smaller and on a larger domain. Foi64 in
(b) the circular SW in the top left corner breaks up around
5 t=800 s and gradually more irregular SW appear. However,
compared to Fig. 6, for a large time a regime sets in on the

smaller domain. Neat=2400 s horizontal bands of equal
t=3870[s] £=3880 t=3890 phase become dominant. These get slowly smoothed out and
adjust their spacing, and the solution relaxes to a horizontal
FIG. 10. Nucleation and local fronts within clustefa) and (b) SWi in a long transient process. No Such rquxanq was ob-
show againd4(t, -) for the solution from Fig. &). (c) Showsfyx; serv_ed on _the Iarg_er domain in Fig. 6 during S|mulat|on_ time,
in the top left quarter of the solution from Fig. 6, see also Fig. 7. InS€€ in particular Fig. @) and 6f), and we do not expect it to

the first frames the location of cluster nuclei have been marked bj)@ppen for even larger times. Of course, quasi-1D SW are
circles. From(a) and (c) we may estimate local front speeds —asymptotically stable independent of the domain size, but the

0.635mm

0.315mm

~1.25x 103 cms?t andc~103 cm s, respectively. irregular SW in Fig. 6 does not seem to be in the domain of
. attraction of such a quasi-1D SW.
ing the remaining parameter&=(30,22,15,1%J mol* Conversely, using the same parameters on a domain four

fixed. In other words, at=2000 s we instantaneously lower times larger than in Fig. 6, the circular SW becomes larger
temperature. The snapshots(a (T=415 K) show that this and survives longer. The remnants can still be identified at
yields a rearrangement of the phase clusters on a larger spa&1900 s in(c). Hence, the instability may be due to the
tial scale. Fort>>3400 s the solution is nearly periodic: the collision of the circular SW with itself, or, more generally,
cluster boundaries drift only slightly between the fifth framefrom the interaction of convex and concave regions. The
(t=3400 3 and the sixth framét=4320 3§ in (a). The sec- time- series of 6;,.;) for the solution in(b) is similar to Fig.

ond time series iifb) shows that the period and amplitude of 6(f), but the oscillations become even more irregular. This
(#,1) are reduced by a factor of roughly 1/2 compared tosimulation(up tot=2400 3 took 12 days on a 2.4 GHz Pen-
¢PE. More accurately, the, quotient of the periods is 4/7tium 4 machine with 512 MB RAM. .

which shows that the clustering also introduces a small time Hence, the system size must be chosen with care; for the
lag for each oscillator. Ir(c), (d) we use the same initial Parameters considered hare 0.635 mm(n=128 seems to
conditions and seT=410 K. Here, compared tta, b the capture the relevant phenomena in acceptable computation
solution becomes nearly periodic after a shorter transient anéme.
with a larger spatial scale for the clusters.

These two simulations illustrate the general temperature
dependence of the model which is as in the 1D case and can
be summarized as follows: at lower temperatures, BO and For PC and SWat least away from irregular regimeshe
PW dominate over PC and SW. For instance, using the initialime series fox6;;) and similar averaged quantities shows
data and remaining parameters from Fig. a415 K we 2 maxima during(roughly) one ODE-oscillation period,
get BO. Conversely, at higher temperatures clustering domwhile (6,,) in SW has the same period &8°r. Moreover,

F. Local fronts within clustered solutions
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TABLE Il. Rate constants for the NO+NH3 reactions orf1@0).

v E; Value at 420 K
Reaction step Param. (shH (kcalx mol™1) (sh
NO desorption X1 Ky 1.7x 101 37.¢" 9.7x10°6
NO dissociation X 1 K, 2.0x 10'° 28.5 3.0
NO trapping on X1 ks 2.2x10* 8.0 1.52
NO desorption hex Ky 4.0x 102 26.0 0.12
NH; desorption 2 1 Ks 1.0x 10° 18.0 0.43
NH, dissociation 2 1 Ke 1.0x 10 275 4.98
NH; formation 1< 1 ks 1.0x 10'° 16.0 47.7
H,O formation 1x 1 kg 1.0x 10% 13.0 1.73< 10°
N, desorption X 1 Kg 1.3x 102 19.0 1.70< 107
H, desorption X 1 Ko 8.0x 1012 23.0 8.72
Transition 1X 1— hex Kyp 2.5x 101 25.0 2.48< 1072

%For zero local coverage, see HA2).

unlike PC and SW, PW may be describable by pure phasean be seen for all time. Fronct) we estimatec= (20
models. This is why so far we made a clear distinction be-x 0.005 mm/(10 9=10"3cm s for the local front speed.
tween clustered solution®C and SWand PW.

Now we show that the distinction is more gradual, which
is important for the comparison of the numerical results with IV. DISCUSSION AND CONCLUSIONS
experimental data in Sec. IV. Strictly speaking, “cluster of o )
equal phase” means that the cluster appears “all at once” in The dependence of the mod@) on the diffusion energies
the greyscale plots used here. This is not the case. Instea@d temperature can be summarized as follows:

using smaller time intervals between the frames for the grey- I(E}[)_ For the _?j'ﬁgihon. ej?elrgles; w;)'l;gble Ifweh obtain PC
scale plots, we now point out that there alester nuclei solutions, provided the Initial perturbations ot a homogenous

from which the cluster appear viacal front dynamicsiIn surface near the periodic ODE orbit are large enough.

fact, this can already be seen in 1D since the front sides Osfiogb)o?%gsa;ﬁggi:;g)u dSLIJ(c):gsOZINn% ?Rgéohggr:;:elggad'guaﬂal
the clusters are not straight lines but benfied., Figs. &) NO P

: T | h le for the cl i.e., it shi h h
and 2c)]. Now we want to give more quantitative state- g\r;\;]tregsi::naee or the clusters, i.e., it shifts the system to the
ments. o (c) One key ingredient of both PC and SW is the rela-

In Fig. 102) we return to the fourth frame in Fig. 8. Note ey fast diffusion ofg and 6%, For slower diffusion of
3

that this is in a transient regime. However, this is similar toe,{,,ﬁl, 031 no clustering appears but phase waves. This is in

the experimental situation since there it is difficult to main-
tain constant conditions for the system over long times: typi-ContraSt to CO+@on P(110 [10-13,23—-26where cluster-

cally the partial pressures slowly drift in the experiments, forJ has only been reported under a global coupling through

) : the gas phase. This global coupling is replaced here by the
instance due to adsorption at the chamber walls. Moreovefelst diffusion Ofaﬁnﬁ; aﬁxl_

in experiments often temperature ramps are used. In the first
P b P (d) Temperature dependence: at lower temperatures, BO

frame in(a) (t=2590 3 a cluster nucleus has b_een marked byand PW dominate over PC and SW, while at higher tempera-
a grey circle. From here a cluster grows whichtag620 s qt]ures clustering dominates over BO and PW. In the clustering

has reached roughly the center of the domain by a 10Cglegime the spatial scale of SW increagdscreaseswith
front. The distance between the nucleu$=2590 s and the decreasingdincreasing temperature.

front position at=2620 s is about 75 0.005 mm. From this These overall features have been confirmed in a number
we may estimate a front speee=1.25X107° cms™. Simi- o further simulations not presented here; see also [R€.
lar cluster nuclei and local front dynamics can be identifiedThey are as in 1009]. The new feature in 2Dare curvature
in the other frames iita). These give rather larger estimates effects. In particular, these can lead to large amplitude oscil-
for the local front speeds. lations of the cluster boundariésig. 3), to a failure of phase

In (b) we illustrate the same mechanism in the fully de-balancing[Figs. 8 and €], and, on sufficiently large do-
veloped clustering regime. Now the time difference betweemains, to irregular standing wavgBigs. 6 and &)].
the appearance of the cluster nucléwrs4355 $ and the full Mathematical explanations for the observed solutions are
appearance of the cluste@=4365 3 is much smaller. Here difficult even for the basic phenomena in 1D, like the clus-
the estimate of a local front makes less sense. For thiering as such and the different roles of the diffusion con-
irregular solution from Fig. 6 the local front dynamics stants. In particular, it is unclear if the 1D problem can be
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TABLE lll. Temperature independent parameters.

Description Param. Value

NO-adsorption flux & 1, hex Fno 2.21x 10P(mbarts™)

NHj-adsorption flux X 1 FrH, 2.84x 10P(mbarts™)

H,-adsorption flux X 1 Fu, 8.28x 10P(mbarts™)

Inhibition coverage of NO for NO dissociation g 0.61

Inhibition coverage of O for NO dissociation gon 0.399

Critical coverage of NO for the X 1— hex phase transf. s 0.3

Critical coverage of NO for the X 1— hex phase transf. Hg” 0.4

Coverage for island growth in the hex1x 1 phase Ogrom 0.5

transt.

Amount of surface defects Oget 1.0x 10

Partial pressureunable, but kept fixed here Pno 1.1x10°% mbar
PNH, 4.7x 1078 mbar

analyzed using amplitude equations for a wave bifurcatiorcase, from the available data we conclude that the estimates
[20-22,39, since here we are far away from a bifurcationin Table | for the diffusion energies do not reproduce the
point with harmonic time dependence of the bifurcating SOexperimental results. Instead, the diffusion energlzfs

lutions. In 2D these problems become worse, and at presegt(30 22,15,18used in Figs. 6-8 yield a better agreement

we have no explanation what causes, for instance, the oscil-. :
lations of the cluster boundaries or the instability of the cir-\mth experiment, though the temperature dependence of the

cular standing wave model is still wrong, see later.
On the other hand, it remains to relate the results for the In Ref. [6], Fig. 2 a sequence of PEEM images is used to

model(2) to the experimental results reported in RE%6]. explai'r? vig front dynamics the formation of _“adsorbate_ is-
Clustering makes the oscillations of averaged quantitiel2nds.” which correspond to phase clusters in our terminol-
more harmonic compared to the ODE oscillations and als®9Y- This agrees qualitatively with the Ioaal front dynamics
reduces the period and amplitude by a factor of roughly 2. Ad" Sec. Il F, but the front speed®.5x 10" cm/s and 1.1
a result, the time series for the averaged quantities from the& 10°* cm/s for two different types of fronts in the experi-
simulation agree better with experimental data; for instancelend are one order of magnitude lower than in Fig. 10. Of
the period in the ODE oscillations is too large by a factor ofcourse, we can decrease the front speed in the simulations by
roughly 2 compared to experime(Ref. [7], Fig. 7) which a factora=1/10 bysimply changing the spatial scale, i.e.,
always includes some averaging. multiplying all diffusion constants uniformly by?. How-
The PEEM images in Ref6] show snapshots of various ever, this would yield some trade-off between the correct
types of patterns obtained at different experimental condispatial scale for the patterns and the front speed.
tions. The PEEM signal measures the difference in local Finally, the temperature dependences of the m®jeand
work function which is a function of all the adsorbed species of the experiment are reversed. In the latter, irregular small
where roughly black correspond to Ngand Qg white to  scale patterns are observed at the lower end of the tempera-
NHj;, and gray to the hex phase of the surface, i.e., to larg@ure window [Ty, Tmax for kinetic oscillations, while for
1-61x,. Here we chosel;., as diagnostic, but since the nermediate temperatures larger scale regular spatial struc-
remaining variables can then roughly be read from the ODEy, o5 dominate, and bulk oscillations ndaf,,. In the model
orbit a comparison can be made. o . (2) it is the other way round. However, the bulk oscillations
The patterns shown in Re[ﬁ]_;lave distinctive ??patlal at highT and the gradual failure of long range synchroniza-
scales Wh'.Ch are on t_he arder of @m down to_lO CM- " tion at lowerT in the experiment are attributed to the global
In some situations, different pattergsuch as spiral waves . .
. . . gas-phase coupling and its breakdown at lolveks already
and target pattern®n different spatial scales coexist. Irregu- 2~ A . .
ﬁﬁald, such a global gas-phase coupling is not includg@)in

lar patterns on small spatial scales are also observed. qit i< o b i f the short iNGQof
these, the overall reaction rates become almost stationarg,n it remains to be seen if some of the shortcomingp

while local averages still shoirregulay oscillations ([6], an resolved by including it.

Figs. 5 and & Proper phase clustering with the splitting of

the specimen into only two clusters as in Sec. Il A was not

observed in Refl6]. This might be due to the fact that rather ACKNOWLEDGMENTS

few parameter ranges were studied with spatially resolved

methods. Moreover, any real surface contains macroscopic The author thanks R. Imbihl and A. S. Mikhailov for
defects like scratches that may destroy large patterns. In arstimulating discussions.
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APPENDIX: THE ODE

To make the paper somewhat self contained, we give the @DHsee Refs[7,8] for the chemical meanings and
discussiont

1X1H1X1

d 0 ot
aer{lxol = FnoPno(f1x1 = OG- — 40hihy) — ko' — ke N?gl elm + kaORS01x1, (Ala)
X
d X ghe ex ex
a NO ™ FNOpNO(ahex_ N(;() - k3 NO‘91><1 - k4 NO> (Alb)
d . d
g (d_t fo)/eérxoﬁv if p Nor> 0 and ' = Oenfixa and fyyq < 1,
—01x1= . Alc
dt VT | = kyy(611 - 6529(1 - 0) if 011> i andc<1, (ALc)
0 otherwise,
11 1x1 11 11
d Onp L Orxa— Oy — 2965 "+ Oy )] grilgixl
dat NT—é = FpgPnrg (O = 39&1742 - 1.66y) - kSHﬁ,X_é —ke— Oros +k7 N01 '; ., (Ald)
X X
d 01><101><1 01><101><l
_9(1)Xl=k2 NO empty_k O "N , (Ale)
dt O1x1 O1x1
A a_ 06 Ohny | Nl foa = 02867+ D) gt (6
U el p ke ke (ALf)
1x1 1x1 1X1 1X1
doa_, [6y1 - gljhxl _ 2.5(6'(13Xl+ 0,{‘><1)]2 v el{lié[ﬁlxl _ Q#Xl_ 2'5(9(1;1 + ehxl)] > el{lxlaﬁxl o aéxlgﬁxl
atH T H,PH, P) Ke P) g 8 g
1X1 1X1 1X1 1x1
(01><1)2
—kyg— (Alg)
91><1
[
The three conditions on the right hand side(Af.c) have to ‘1 Nél ggl
be read top down and the first one fulfilled determines the eémpty: max | 61x1— _ei”h - g ,0
right hand side. The rate constakis... ,k;; are determined NGO O
by Arrhenius-lawk;= v, &/RT where they, and most of the + max{ (655" - 05, 0],
E; are constants, given in Table Il. F&y and E5 coverage-
dependent nonlinear corrections are used in the form ( N>él aéxl)
=\ — - [7) ,0 + Ohex=1,
E1 — Eg _ 24( 0JN>81/01><1)21 E5 — Eg _ 3(X 9[%1742/91“)2- Nrg Hglt 1x1 »V1x1 hex
(A2) Oer = O1x10der 0ot = OhexDen
The auxiliary functions ifAl) are given by and the further parameters are given in Table IlI.
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