
Pattern formation for NO+NH 3 on Pt(100): Two-dimensional numerical results

Hannes Uecker*
Mathematisches Institut I, Universität Karlsruhe, D-76128 Karlsruhe, Germany

sReceived 30 January 2004; revised manuscript received 24 May 2004; published 11 January 2005d

The Lombardo-Fink-Imbihl model of the NO+NH3 reaction on a Pts100d surface consists of seven coupled
ordinary differential equationssODEd and shows stable relaxation oscillations with sharp transitions in the
relevant temperature range. Here we study numerically the effect of coupling of these oscillators by surface
diffusion in two dimensions. We find different types of patterns, in particular phase clusters and standing
waves. In models of related surface reactions such clustered solutions are known to exist only under a global
coupling through the gas phase. This global coupling is replaced here by relatively fast diffusion of two
variables which are kinetically slaved in the ODE. We also compare our simulations with experimental results
and discuss some shortcomings of the model.
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I. INTRODUCTION

Pattern formation on catalytic surfaces has been intensely
studied in recent years with most studies focusing on two
reaction systems, catalytic CO oxidation and catalytic NO
reduction. These reactions have been investigated on various
platinum and rhodium single crystal surfaces. Asstate-
dependentd anisotropy of surface diffusion, global coupling,
and adsorbate-controlled surface phase transitions added fea-
tures to chemical reactions and led to phenomena in pattern
formation not known in liquid phase reactions; for general
background and reviews see Refs.f1–4g.

The catalytic reduction of NO with NH3 to the products
N2 and H2O on a Pts100d surface has been studied experi-
mentally in Refs.f5,6g, including photoemission electron mi-
croscopysPEEMd images showing the spatiotemporal behav-
ior of the reaction. This catalytic surface reaction involves
the adsorption of the reactants at the surface, dissociation and
reaction on the surface, and desorption of the products from
the surface. Additionally, the Pts100d surface can switch be-
tween two substrate configurations, the catalytically active
131 phase with a bulklike surface termination and a cata-
lytically inert quasihexagonal reconstructed phases“hex”d.
The stable state of the clean Pts100d surface is the hex re-
construction but above a critical adsorbate coverage the
131 phase is more stable and the reconstruction is lifted.
Thus an adsorbate-induced 131↔hex phase transition is
constituted, and for temperatures around 440 K and at low
pressuresabout 10−6 mbard the catalytic conversion process
proceeds in a periodic way.

A realistic model for NO+NH3 on Pts100d has been set
up in Ref. f7g. It consists of seven coupled ordinary
differential equations sODEd for the variables
uNO

131,uNO
hex,u131,uNH3

131,uO
131,uN

131,uH
131, which denote, in that

order, the local coverages of NO on the 131 phase, of NO
on the hex phase, the fractionu131 of the surface in 131
phase, and the local coverages of NH3, O, N, and H on the
131 phase. We write the ODE in abstract form as

d

dt
X = fsX;p,Td, X P R7, f = sf1, . . . ,f7d, s1d

wherepPR11 is a vector of temperature independent param-
eters. Moreover,s1d contains 11 rate constants depending by
the Arrhenius law on temperatureT, which we therefore dis-
play explicitly. In p there are two externalstunabled param-
eters, pNO, and pNH3

, acting as driving forces and corre-
sponding to a constant supply of NO and NH3, respectively,
from the gas phase.

The ODEs1d has periodic solutions in a parameter range
similar to the experiment. However, the oscillations ins1d are
more anharmonic than in the experiment. In Sec. II A we
plot typical periodic orbits ofs1d, but we will not repeat in
detail the properties of this ODE; see the Appendix for the
equations, and Refs.f7,8g for discussion and numerical
analysis ofs1d. Here we consider linear coupling of these
ODE oscillators by surface diffusion in two-dimensions
s2Dd, i.e., we study the reaction-diffusion system

d

dt
Xst,xWd = fsXst,xWd;p,Td + MsTdDXst,xWd, s2d

where MsTd is the diagonal diffusion matrix depending by

the Arrhenius law onT and the diffusion energiesEW . Depend-
ing on the parameters we find a rich variety of spatio-
temporal patterns by direct numerical integration ofs2d. Our
work then has the following two goals:sad to present ex-
amples of the interesting patterns fors2d and thus give a
motivation and some starting points for the analysis ofs2d
from an abstract pattern formation point of view, andsbd to
assess the quality of models2d and to identify realistic pa-
rameters for the diffusion energies ins2d by comparison with
PEEM images and further data from experimentf5,6g.

The diffusion energiesEW are not external parameters in
the experiment. Nevertheless we focus on the dependence of

s2d on EW , i.e., we changeMsTd independent ofT, sinceEW is
known only rather roughly from experiment or first prin-
ciples. We also study the temperature dependence ofs2d
which shows a shortcoming of the model and suggests that a
global coupling should be introducedssee laterd. The remain-*Electronic address: hannes.uecker@math.uni-karlsruhe.de

PHYSICAL REVIEW E 71, 016207s2005d

1539-3755/2005/71s1d/016207s14d/$23.00 ©2005 The American Physical Society016207-1



ing sODEd parameters, in particular the partial pressurespNO
andpNH3

, are kept fixed.
The models2d has been studied in one dimensions1Dd in

Ref. f9g. There the patterns were classified into four groups
ssee Sec. II D for illustrationd: bulk oscillationssBOd, phase
clusterssPCd, standing wavessSWd, and phase wavessPWd.
Even in 1D a systematic study of the dependence of the
patterns on the parameters and the initial conditions is hard.
In 2D, additional geometric effects play an important role
and for SW and PC lead to metastable patterns and very long
transients. Of course, numerics also becomea priori much
more expensive in 2D1.

Bulk oscillations means that the whole surface oscillates
homogeneously in the limit cycle ofs1d, while in both PC
and SW the oscillations are organized into macroscopic areas
sclustersd in such a way that the phase changes from one area
to the next in a regular way, with phase shifts of half a
period. The difference between PC and SW is that in SW the
phase pattern has an intrinsic spatial wave length, while in
PC the clusters have no intrinsic size and grow until the
whole domain is split into only two clusters. Here we follow
f10–13g in the terminology, but also loosely term both SW
and PC as clustering. The clustering requires substantial de-
viations from the periodic ODE orbits at the cluster bound-
aries. In contrast, PW means that the phase changes
smoothly and each oscillator is always close to the periodic
ODE orbit.

The transitions between the different regimes are rather
delicate. The system is most sensitive with respect to the
srelatively slowd NO diffusion on the 131 and the hex
phase. This agrees well with the analysis in Ref.f8g where it
is shown thatuNO

131, uNO
hex, andu131 are the “master” dynamic

variables fors1d sin the oscillatory regimed while the remain-
ing four are “slaved.” However,u131 does not diffuse, which
gives NO diffusion its special importance.

Of course, BO, PC, SW, and PWsand the competition
between these patternsd are also interesting from a theoretical
point of view. Phase waves for oscillators close to a Hopf
point can be analyzed using phase diffusion equations; see,
e.g., Refs.f14–16g. However, relaxation oscillators may be-
have quite differently undersweakd coupling than harmonic
oscillators f17–19g; in particular, under certain conditions
phase waves cease to exist; see Ref.f9g for discussion and
further references. On the other hand, SW can be generated
in simple reaction-diffusion systems via the so called wave
bifurcation f20–22g. This, however, again corresponds to a
sroughlyd harmonic timesand spaced dependence.

In surface catalysis, clustering has been intensively stud-
ied for the CO oxidation on Pts110d, both experimentally and
theoretically f10–13,23–26g. Here the reaction-diffusion
models have considerably simpler ODE dynamics thans1d
sthree dimensional or, in a refined version, four dimensionald,
but additional to the surface diffusion there is aglobal cou-
pling through the gas phase in the spatially extended system.
Moreover, external forcingf13g and/or global delayed feed-

backf11,23,24,27g have been used tocontrol the pattern for-
mation in this system. In Ref.f28g a condensed model of
surface catalysis with long range coupling has been studied
by direct numerical simulation and an extremely rich variety
of cluster patterns has been obtained. See also Refs.f29–31g
for experimental results on clustering in the Belousov-
Zhabotinsky with global feedback and a model of this prob-
lem with two dimensional kinetics.

The ODEs1d can also be reduced to a three dimensional
system

d

dt
y = gsy;p,Td, y = 1uNO

131

uNO
hex

u131
2 , s3d

gsyd = 1 f1fuNO
131,uNO

hex,u131,hsydg
f2fuNO

131,uNO
hex,u131,hsydg

f3fuNO
131,uNO

hex,u131,hsydg
2 ,

for the slow variablesy by elimination of the fast variables
z=suNH3

131,uO
131,uN

131,uH
131d f8g. The reduction of dimension

in s3d is of course advantageous both analytically and nu-
merically. Naively, we may then study the reaction diffusion
problem

d

dt
y = gsy;p,Td + MredDy s4d

with Mred=diagsDNO
131,DNO

hex,0d. However, as already dis-
cussed in Ref.f9g, although the error betweens1d and s3d is
small, obviously all the influence of thesrelatively fastd dif-
fusion of NH3 and H is lost in going froms2d–s4d. On the
other hand, the elimination of kinetically slaved variables
from PDE like s2d can be done analytically only in special
cases, see, e.g., Ref.f32g, and numerically yields little ad-
vantage.

Note that s4d corresponds tos2d in the limit DNH3
, DH

=0. We find that no clustering occurs in this limit or even for
relatively slow diffusion of NH3 and H. This has two conse-
quences:

s1d it means that to study the model for realistic values of
MsTd we must simulate the full systems2d;2 and

s2d more importantly, it shows that, additional to the re-
laxation type of the oscillations, akey ingredientfor cluster-
ing in s2d is a nonlocalsor long ranged coupling due to rela-
tively fast diffusion of the kinetically slaved variablesuNH3

131

anduH
131.

The most important difference between 1D and 2D are
curvature effects. One result is that thesnontriviald clustered
solutions presented here do not become strictly periodic dur-
ing simulation time. Instead, these solutions becomenearly
periodic: this means that the antiphase oscillations of well

1A typical simulation of 4000 s of simulated system time on
1283128 grid points runs about 100 h on a 2.4 GHz Pentium 4
machine with 512 MB RAM and similar machines, see Sec. II C.

2The kinetically slaved and immobile variablesuO
131 anduN

131 can
be eliminated froms2d as long as the solution is sufficiently close to
the periodic ODE orbit at each point in space, which is more and
more violated the more complicated the solutions become. In any
case, the speedup is small.
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defined clusters can be observed over manysODEd periods,
but the boundaries or nodal lines between the clusters slowly
drift. There are also solutions fors2d in which SW in annular
shape initially develop. These look similar to target patterns.
However, they are unstable and depending on geometric con-
straints like the domain size, they either relax to quasi-1D
SW in a long transient process or evolve into irregular SW.
In contrast, in 1D in the same parameter regimes all solutions
are quite regular and eventually become periodic, which may
include periodic changes of the cluster boundariessoscillat-
ing phase clustersd.

An important effect of the clustering is that it reduces the
periods of oscillations of macroscopicsi.e., spatially aver-
agedd quantities by a factor ofsroughlyd 2. Moreover, while
s1d has relaxation oscillations with sharp transitions, the av-
eraged quantities oscillate more harmonically. Both effects
together yield a better agreement of averaged quantities for
the model with experimental datasf7g, Figs. 7 and 3d. How-
ever, thespatiotemporal agreement ofs2d with the experi-
mental resultsf6g is not satisfying. By properly adjusting the
relative magnitude of the diffusion constants within chemi-
cally realistic ranges we do get patternssstanding wavesd on
comparable spatial scales, but the temperature dependence of
the model does not match the experimental datassee belowd.
Moreover, in Ref.f6g the observed patterns have been ex-
plained in terms of front dynamics, while in the model SW
and PC dominate for realistic values of the diffusion con-
stants. As noted, mathematically one should make a clear
distinction between phase dynamicssfrontsd where every os-
cillator is always close to the ODE limit cycle, and clustered
patterns where this is not true at the cluster boundaries. In
Sec. III F we shall argue that in fact the distinction is more
gradual in the models2d. In particular, there are still local
front dynamics within “clusters of equal phase.” These local
fronts then reproduce qualitatively the front dynamics seen
in the PEEM imagesf6g, though the front speed is too fast
sroughly by a factor of 10d in our simulations.

The most serious shortcoming of the model is a reversed
temperature dependence of the spatial pattern size. In a nut-
shell, increasingT in s2d decreases the spatial scale of the
patterns, while in the experiment it is the other way round.
We note again that there isno global gas-phase couplingin
s2d, although it most likely plays an important role in the
experiment. In particular, bulk oscillations at highT and the
gradual failure of long range synchronization at lowerT in
the experiment are attributed to the global gas-phase cou-
pling at highT and its breakdown at lowerT f33g. It remains
to be seen if the inclusion of such a global coupling intos2d
will improve the temperature dependence of the model.

The remainder of this work is organized as follows. The
preparatory Sec. II contains remarks on the periodic orbits
for s1d, the diffusion constants, the numerical method, and
the choice of initial conditions and domain size fors2d. In
Sec. III we present our results. Conclusions are summarized
in Sec. IV, while the Appendix contains the ODEs1d. Movies
and additional simulations are available via internetf34g.

II. THE SETUP

A. The periodic ODE orbits

Figure 1 shows periodic orbitsgsTd for s1d at T
=410,420,430 K. The partial pressures arepNO=1.1

310−6 mbar andpNH3
=4.7310−6 mbar, as in Ref.f7g. In sad

we present all seven dynamic variables, whilesbd shows
the chemically interesting production ratesrN2
=0.5Nsk9suN

131d2/u131 of N2 and rH2O=Nsk8uO
131uH

131/u131

of H2O, whereNs=1.331015 cm−2 is the concentration of
surface sites. The most important conclusions from Refs.
f7,8g are as follows. One period is divided into four seg-
ments. We plotu131 first since the decay ofu131 in segment
1 sets the slowest time scale in the largest segment; here all
other variables followu131 adiabatically. This breaks down
in segment 2, where adsorbtion of NO starts the hex→1
31 phase transformation in segment 3. In segment 4 the so
called, “surface explosion” occurs with a rapid production of
N2 and H2O. The NHx,ad/Had layer built up this way is un-
able to stabilize the 131 phase, and the process repeats with
the slow relaxation to the hex phase in segment 1.

The temperature dependence is illustrated inscd. For
lower T the saveraged fraction u131 of the 131 phase in-
creases, while the amplitude of the oscillations and the reac-
tion rates decrease, and vice versa for higherT. The periodt0
also depends onT but only slightly in the middle of the
oscillatory regime considered here. We havet0s420 Kd
<97 s. Below the lower thresholdsT<404 Kd for oscilla-
tions the surface is completely in the 131 phasesu131=1d,
while above the upper thresholdsT<433 Kd it is in the hex
phasesu131=0d. In both cases, the production ratesrN2

and
rH2O are zero. For the reaction diffusion problems2d two
observations from Fig. 1 are most important: the smaller
slargerd amplitudes at lowershigherd temperatures yield
smallerslargerd spatial gradients for oscillators with shifted
phases, and the transitions become lesssmored sharp for
lower shigherd T; see Ref.f9g and Sec. III D.

B. The diffusion constants

Surface diffusion constants are difficult to measuref35g.
For the diffusion constants for Pts100d /H,N,O,NO,NH3

we follow the arguments given in Ref.f9g, based on Ref.
f35,36g. In the temperature range considered here, O and N
are considered immobile. As usual, we approximate the re-

maining Di using the Arrhenius-lawDi =ne−Ẽi/RT, where
R=8.3144 J K−1 mol is the universal gas constant,

n=0.001 cm2 s−1 is a common prefactor, andẼi is the acti-
vation energy for diffusion of the respective species. This
yields the data in Table I, which, however, should be seen as
rough estimate only, hence, as a starting point for the numeri-
cal simulations.

The diffusion constants differ quite significantly in mag-
nitude: diffusion of NO131 and NOhex is relatively slow and
that of H and NH3 relatively fast. In this sensesstrictly
speaking forDNO

131=DNO
hex=0d s2d is related to the model prob-

lem in Ref. f37g where a field of oscillators is coupled by
diffusion through a passive medium. In Sec. III we find that
the “typical pattern size”lp for s2d at T=420 K is of the
order of 0.01 cm. HenceÎDNH3

t<2.4310−3 cm and
ÎDHt<1.8310−3 cm, wheret=1 s is our time scale, are
roughly of the magnitude aslp and diffusions ofuNO

hex and
uN

131 introduce a nonlocal but also nonglobal coupling, where
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local sglobald coupling would correspond toÎDNH3
t

! lpsÎDNH3
t@ lpd.

C. Numerical method and choice of initial conditions
and system size

To discretizes2d we choose a system sizeL, and consider
n3n oscillatorsXs· ,i , jd=Xs· ,xi ,yjd at sxi ,yjd=sid , jdd, i , j
=1, . . . ,n, d=L / sn−1d, with periodic boundary conditions.
The numerical scheme is the same as in Ref.f9g: a split-step
method, where the ODE part is integrated using the linearly
implicit solver limex sf38g, Sec. 6.4d savailable online at
www.zib.de/SciSoft/CodeLib/ivpode.en.htmld and the linear
PDE-partsd/dtdX=MDX using an implicit Fourier spectral
method. In our simulations we used=0.0005 cm and the
average effective time steps are aboutdt=0.001–0.01 ssde-
pending on the parametersd. Convergence ind was checked
by reducingd by a factor of 2 and comparison.

The initial conditions fors2d were chosen as localized
perturbations of the point

Z0 = s0.03,0.24,0.22,0.53 10−6,0.01,0.02,0.22d

which is roughly near the end of segment 1 of the periodic
orbit gs420d, cf. Fig. 1. That means, we first assign
uXut=0si , jd=Z0 to all oscillators, then choosel P h0, . . . ,7j
and aPR, and add a perturbation of amplitudea to the lth
component in part of the domain. In formulas, we set

uXlut=0si, jd = Hzl + a, si, jd P I,

zl elsewhere,
J s5d

whereI,N2 is an index set. For somek,n we setI=Ik
=hsi , jd :0ø i , j økj, i.e., we perturb in a square in the upper
left. The BO solutionXBO is asymptotically stable in the
parameter regime given by Table I. Hence, ins5d we need
sufficiently largek and/or a, depending onl, to push the
system at least transiently away fromXBO. As should be
expected from the ODE reductions3d, the easiest way to
perturb the system away fromXBO is to introduce perturba-
tions inuNO

131,uNO
hex or u131, i.e., to choosel P h1,2,3j. For the

sake of brevity we restrict to perturbations inu131 sl =3d.
Note that this way we add a perturbation to a nondiffusive
component and, hence, the system can only be driven back to

FIG. 1. sad periodic ODE orbits atT=420 K, sbd production
rates atT=420 K, scd uNO

131, uNO
hex, u131, rN2

at T=410, 430 K; time
in s, the fractionu131 of the surface in the 131 state is dimension-
less, coverages in ML=monolayers=snumber of adsorbed
moleculesd / snumber of free sites on the surfaced. Quantities from

these ODE orbits will henceforth be referred to as, e.g.,u131
ODE, and

the unit for coveragessML d will be omitted for convenience.

TABLE I. Diffusion energies and constants. For convenience we

write EW =sĒNO
131,ẼNO

hex,ẼNH3
,ẼHd. NA means not applicable.

Process Parameter
Ẽ

skJ mol−1d

Value at
420 K

scm2 s−1d

NO diffusion s131d D1=DNO
131 28 3.3310−7

NO diffusion shexd D2=DNO
hex 24 1310−6

NA D3=0 NA Always=0

NH3 diffusion D4=DNH3
15 1.4310−5

O diffusion D5=DO Set to 0

N diffusion D6=DN Set to 0

H diffusion D7=DH 18 5.7310−6
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or further away fromXBO by coupling to the diffusive com-
ponents.

We also use random initial conditions in the form

uXlut=0si, jd = r i,j ,lzl , s6d

where eachr i,j ,l is a spseudodrandom number between 0.5
and 1.5. Choosing a newr i,j ,l for eachsi , jd tends to yield
BO. Hence, the initial data waspreclusteredby choosing the
samer i,j ,l on squares of certain side lengthsq.

The experimental data in Ref.f6g was reported for a
sampled area of about 1 mm2, while the PEEM images show
circular areas of about 0.5 mm diameter. Here we usen
=128 in most simulations, hence,L=sn−1dd=0.635 mm,
which is comparable to the size of the PEEM images. We
also show some simulations withn=64 and one withn
=256 to illustrate the influence of the system size which
unlike in the 1D case plays an important role in 2D. Besides
faster computation the advantage of smaller domains lies in
shorter transient behavior. However, this may also introduce
artificial constraints, see Sec. III E. Usingn=128 is a good
choice to obtain meaningful results in acceptable computa-
tion time.

We focus on plottingu131st ,x,yd as the main diagnostic
for s2d. As explained in Sec. II A, the decay ofu131 sets the
timescale in the largest segment 1 of the ODE-orbits. Hence,
for the reaction-diffusion problem we expect that for given
u131 the remaining variables can roughly be read from Fig.
1, at least at values in segment 1 of the ODE orbit. This turns
out to be truef9g. To visualize the spatiotemporal patterns we
use 2D plots of u131 at fixed time, and space-time
plots ofu131 along a diagonal through the 2D domain. These
plots are further complemented with diagnostics like
local time series and the spatial averageku131lstd
=s1/n2doi,j=1

n u131st , i , jd.

D. Classification in 1D

In Fig. 2 we show greyscale plots from Ref.f9g illustrat-
ing BO, PC, SW and PW in 1D,d=0.005 mm,n=80, hence,
spatial sizeL=0.395 mm, where the initial conditions are the
1D analog ofs5d. The solutions insad,scd, and sdd become
perfectly periodic after a rather short time transient. The PC
solution in sbd shows oscillations of the cluster boundaries.
However, these oscillations are much smaller than in 2D; see
later.

III. SIMULATIONS

We first present examples of different patterns atT
=420 K andL=0.635 mm. Temperature dependence and de-
pendence on system size are discussed in Secs. III D and
III E later. We also start with a clear distinction between
clustered solutionssPC and SWd and phase dynamicssPWd,
while local phase dynamics within clustered solutions are
discussed in Sec. III F. Finally, the patterns will be compared
with experimental results in Sec. IV.

The BO solution is asymptotically stable near the param-
eter regime given in Table I. Therefore we directly start with
a more interesting solution.

A. Phase clusters

In our first simulation we useT=420 K, the diffusion data
from Table I,n=128, hence,L=0.635 mm, and initial con-
ditions according tos5d with k=16 anda=0.1. This yields a
2D PC solution. Figure 3sad shows snapshots ofu131st , ·d for
the initial evolution. The greyscales are linear interpolations
betweenzmin=black=0.2 andzmax=white=0.8; in the follow-
ing this is denoted byzscal=zmin,zmax.

The larger value ofu131 at t=0 s in the top left corner
dilutes the NO adsorption in the 131 phase; in this way we
inhibit the hex→131 phase transition in this part of the
surface, which in the remaining part takes places aroundt
<7 s. Then att<62 s,u131 has sufficiently decayed in the
top left corner for the hex→131 phase transition to start,
while in the remainder of the domainu131 is still decaying
along segment 1 of the ODE orbit. For largert this develops
into a PC solution: cluster 1 roughly sits in the top left corner
of the domain while cluster 2 fills the rest of the domain.
Near t=750 s both clusters have about the same area. This

FIG. 2. Examples from Ref.f9g for BO, PC, SW, and PW in 1D.
T=420 K, greyscale plots ofu131st ,xd fanduNO

131st ,xd in sadg, hori-
zontal axist, vertical axisx, spatial sizeL=0.395 mm. The param-

eters are EW =s28,24,15,18dkJ mol−1 in sad,sbd; EW =s30,22,15,

18dkJ mol−1 in scd, EW =s28,22,25,25dkJ mol−1 in sdd. sad Stable
BO: small initial perturbation is quickly repaired.sbd PC: larger
initial perturbation yields phase clusters that split the domain into
two halfs. scd SW: clustering with intrinsic spatial length.sdd PW:
smooth phase changes. Insbd–sdd, as in the figures to follow, in
order to avoid overcrowded pictures we do not repeat the spatial
sizeL in the plots if it is the same as in the previous frame. Simi-
larly, all greyscale plots showu131 unless noted otherwise.
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can be seen from the full line insbd showing the spatial
averageku131lstd. Here we also plot the local time series
u131st ,xW1d of the point in the top left corner andu131 from
the ODE solution. These two curves suggest that atxW1 the
solution is close to the ODE limit cycle. This can be checked
by closer inspection of the solutions and is true for all points
in the interior of a cluster; see alsosfd.

Unlike the 1D case, the areas of the two clusters do not
become almost equal and constant in time. Instead, the
boundary between the two clusters oscillates as illustrated in
scd. In 1D, such oscillations of the cluster size are much
smaller in amplitude and almost negligible for the present
parameters. Hence, these oscillations must be attributed to
curvature effects in 2D. Previewing Sec. III E we remark that
the oscillations become smaller on smaller domains. How-
ever, also on smaller domains there is in general no phase
balancing, i.e., the areas of antiphase clusters do not become
equal. Insdd we show snapshots ofu131 at times where clus-
ters 1 and 2 have become maximal in area, respectively.

Panelsed shows a space-time plot ofu131 along the diagonal
marked insad, while sfd shows three of the remaining com-
ponents. This illustrates that except at the nodal line between
the clusters the solution is always close to the ODE orbit,
and how the clustering looks in these components.

Initial conditions according tos5d have the advantage of
being well controlled, but they are also artificial. In Fig. 4 we
use the same parameters as before but now with random
initial data according tos6d. Locally the initial data is quickly
smoothed out as can be seen from the first two frames insad.
At t=100 s the solution shows a number of clusters. The
further evolution first shows a coarsening process.

At t=1000 s the domain is split into only two clusters of
almost equal area. This configuration is remarkably stable: in
the further evolution there is only a slow drift of the cluster
boundaries, i.e., this solution isnearly periodic, which can
also be seen fromku131l in sbd. Similarly, the space time plot
in scd also indicates the rather slow adjustment of the cluster
boundaries already betweent=500 s andt=1000 s, though it

FIG. 3. Phase clusters:T=420 K, domain sizeL3L with L=0.635 mmsn=128d, EW =s28,24,15,18dkJ mol−1, initial data according tos5d
with a=0.1,k=16. sad,sdd u131st , ·d. sed, sfd space-time plots along the diagonalslengthÎ2Ld marked in the first frame ofsad. The pointxW1

for the local time series insbd is the top left corner.zscal=0.2, 0.8 insad, sdd, andsed.
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of course fails to capture the geometry of the solution.

B. Phase waves

Figure 5 gives an example of a PW. We again useT

=420 K and the same initial data as in Fig. 3 but nowEW

=s28,24,30,30dkJ mol−1. Hence, diffusion ofuNH3

131 anduN
131

is now slower than that ofuNO
131 anduNO

hex. At t<970 s insad,
u131 has started to grow in the top left corner. This triggers a
circular front which starts to spread. Neart<976 s, u131
also increases in the middle of the domain. The front then
collides with this structure. Subsequentlyu131 decreases
along segment 1 of the ODE orbit with a small phase gradi-
ent throughout the domain. This can be clearly seen in the
diagonal space-time plot inscd. For largert the profile along
the diagonal roughly keeps its shape. The time series insbd
shows thatku131l is slightly smeared out by the PW com-
pared to the sharp transitions inu131

ODE.
On larger domains we can also produce longer fronts

which further smear out the transitions inku131l ssee Ref.f9g
for 1D examplesd. In PW, every oscillator is always quite
close to the periodic ODE orbitgsT=420 Kd, with some
small deviations only during the collisions of the fronts.

Hence, in contrast to clustered solutions this situation should
be describable by pure phase modelssf14g Sec. IVd.

Similar front dynamics are always obtained for large val-

ues of ẼNH3
and ẼH ssmall values ofDNH3

and DHd. We
conclude that it is the nonlocal coupling by fast diffusion of
uNH3

131 and uN
131 that prevents, for instance, the solution att

=70 s in Fig. 3sad to trigger a similar front. Hence the fast
diffusion of uNH3

131 and uN
131 is one key ingredient for the

clustering.

C. Standing waves

In Ref. f9g it was found that in 1Dsin the clustering
regime, i.e., for largeDNH3

, DHd the diffusions ofuNO
131 and

uNO
hex play the following roles: decreasingsincreasingd DNO

131

sẼNO
131d may switch the system from PCsclustering with no

intrinsic length scaled to SW sclustering with intrinsic length
scaled and for SW decreases the spatial size of the clusters.

Decreasingsincreasingd DNO
hex sẼNO

hexd acts the other way round.
See also Figs. 2sbd and 2scd for illustration in 1D. We now
illustrate the similar effect in 2D.

FIG. 4. Phase clusters for random initial data:T=420 K, L

=0.635 mm,EW =s28,24,15,18dkJ mol−1, initial data according to
s6d with q=8. sad snapshots ofu131st , ·d. scd u131 diagonal space-
time plot.zscal=0.2, 0.8 in all greyscale plots.

FIG. 5. Phase dynamics for slower diffusion ofuNH3

131, uN
131: T

=420 K, EW =s28,24,30,30dkJ mol−1, L=0.635 mm, initial data as
in Fig. 3. sad u131st , ·d. scd u131, diagonal space-time plot.zscal

=0.2,0.8 in all greyscale plots.
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In Fig. 6 we useT=420 K and the same initial conditions

as in Fig. 3, but nowEW =s30,22,15,18dkJ mol−1. The initial
evolution looks roughly the same as for the original values

EW =s28,24,15,18dkJ mol−1. However, for instance att
=410 s insad we see that now the top left corner itself starts
to split into annular clusters, similar to a target pattern. Like-
wise, in the remaining part of the domain a banded structure

appears where the bands of equal phase have a width of
approximately 0.05–0.08 mm. Hence the clusters now have
an intrinsic spatial scale. Therefore this solution is called a
standing wave. This initial evolution can be nicely traced in
the space-time plotsbd.

However, the circular SW is not stable. Therefore, trig-
gered by unavoidable numerical errors, fort.1000 s the
solution gradually loses its symmetry and standing waves
appear in an irregular wayfthird row in sadg. This continues
for large time and leads to the irregular space-time plotscd
and to irregular small amplitude oscillations ofku131l sdd.

In Fig. 7 we illustrate that locally this irregular regime
still shows antiphase clustering. The snapshots insad are
blow-ups of the solution from Fig. 6 at large time in the
square of side length 0.155 mm in the top left corner, show-
ing antiphase oscillations of clusters with a spatial scale of
about 0.05 mm–0.08 m, while the full line insbd shows the
local averageku131lloc over this part of the domain. We dis-
cuss the local dynamics of this solution again in more detail
in Sec. III F.

For the present parameters, i.e.,T=420 K, EW

=s30,22,15,18dkJ mol−1, and L=0.635 mm, random initial
data as in Fig. 4 directly lead to irregular SWf34g. In 1D,
irregular SW do not existsfor the present parametersd and the
solution always evolves into a perfectly regular SW, also for
random initial conditions. Hence, the instability of the circu-
lar SW in Fig. 6 must be attributed to curvature effects.
There is, however, a strong dependence of the solution on the
2D domain size, see Fig. 9 in Sec. III E: on smaller domains
the irregular SW may relax tosregulard quasi-1D SW. On the
other hand, on larger domains, larger circular SWsmore an-
nulid may develop from localized initial data before becom-
ing unstable. This suggests that the instability of the circular
SW comes from the collision of the SW with itself due to the
periodic boundary conditions.

D. Temperature dependence

In Fig. 8 we use the irregular solution att=2000 s from
Fig. 6 sT=420 Kd as initial condition at lowerT while keep-

FIG. 6. Irregular standing waves: T=420 K, EW

=s30,22,15,18dkJ mol−1, L=0.635 mm, initial data as in Fig. 3.sad
u131st , ·d. sbd, scd u131, diagonal space-time plots.zscal=0.2,0.8 in
all greyscale plots.

FIG. 7. Local clusters:sad u131st , ·d, magnification of the square
of side lengthL=0.155 mmsn=32d in the top left corner of the
simulation from Fig. 6 at large time,zscal=0.2,0.8.sbd Time series,
wherelu131lloc denotes the spatial average over the small square.
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FIG. 8. Temperature dependence:EW =s30,22,15,18dkJ mol−1, L=0.635 mm, initial data fromt=2000 in Fig. 6;T=415 K in sad, sbd,
T=410 K in scd, sdd. sad u131st , ·d, zscal=0.3,0.8. sbd lu131l during transient and for nearly periodic solution, together withu131

ODEsT
=415 Kd sdashedd. scd u131st , ·d, zscal=0.4,0.9.sdd ku131l for scd andu131

ODEsT=410 Kd. Lowering temperature leads to regular SW with a
larger spatial scale. The local dynamics of the solution insad neart=2600 s will also be discussed in Sec. III F.

FIG. 9. Dependence on system size,T=420 K in all simulations:sad EW =s28,24,15,18dkJ mol−1, L=0.315 mm, diagonal plot ofu131,

and time seriesku131lstd. sbd EW =s30,22,15,18dkJ mol−1, L=0.315 mmsn=64d, u131st , ·d. scd EW =s28,24,15,18dkJ mol−1, L=1.275 mm
sn=256d, u131st , ·d. sad corresponds to the simulation from Fig. 3sPCd on a four times smaller domain,sbd/scd correspond to the simulation
from Fig. 6 on a four times smaller/larger domain.
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ing the remaining parametersEW =s30,22,15,18dkJ mol−1

fixed. In other words, att=2000 s we instantaneously lower
temperature. The snapshots insad sT=415 Kd show that this
yields a rearrangement of the phase clusters on a larger spa-
tial scale. Fort.3400 s the solution is nearly periodic: the
cluster boundaries drift only slightly between the fifth frame
st=3400 sd and the sixth framest=4320 sd in sad. The sec-
ond time series insbd shows that the period and amplitude of
ku131l are reduced by a factor of roughly 1/2 compared to
u131

ODE. More accurately, the, quotient of the periods is 4/7
which shows that the clustering also introduces a small time
lag for each oscillator. Inscd, sdd we use the same initial
conditions and setT=410 K. Here, compared tosa, bd the
solution becomes nearly periodic after a shorter transient and
with a larger spatial scale for the clusters.

These two simulations illustrate the general temperature
dependence of the model which is as in the 1D case and can
be summarized as follows: at lower temperatures, BO and
PW dominate over PC and SW. For instance, using the initial
data and remaining parameters from Fig. 3 atT=415 K we
get BO. Conversely, at higher temperatures clustering domi-

nates over BO and PW. In the clustering regime, the spatial
scale of SW decreasessincreasesd with increasingsdecreas-
ingd temperature. As discussed in Sec. IV the temperature
dependence of the experiment is reverse.

Lowering temperature has two effects: it makes the peri-
odic ODE orbits less anharmonic, and it decreases diffusion.
To avoid the second effect we for instance reran the simula-
tion from Fig. 3 atT=415 K but with the diffusion constants
from T=420 K. This again gives BO. Hence, thesecond key
ingredient for the clusteringis the relaxation type of the
ODE oscillations, which becomes sharper at largerT. We
remark that the numerics also become more difficult at larger
T and the model may fail due to violation of certain mass
balances; see Ref.f9g for more detailssin the 1D cased.

E. Dependence on system size

In 2D, the dependence on system size is much stronger
than in 1D. This is illustrated in Fig. 9. Insad we again use
the parameters from Fig. 3 but withL=0.315 mmsn=64d.
This again yields a PC but now with only small oscillations
of the cluster boundaries, i.e., the solution becomes almost
perfectly periodic.

Panelssbd and scd show the solution with the parameters
from Fig. 6 on a smaller and on a larger domain. Forn=64 in
sbd the circular SW in the top left corner breaks up around
t=800 s and gradually more irregular SW appear. However,
compared to Fig. 6, for a large time a regime sets in on the
smaller domain. Neart=2400 s horizontal bands of equal
phase become dominant. These get slowly smoothed out and
adjust their spacing, and the solution relaxes to a horizontal
SW in a long transient process. No such relaxation was ob-
served on the larger domain in Fig. 6 during simulation time,
see in particular Fig. 6sed and 6sfd, and we do not expect it to
happen for even larger times. Of course, quasi-1D SW are
asymptotically stable independent of the domain size, but the
irregular SW in Fig. 6 does not seem to be in the domain of
attraction of such a quasi-1D SW.

Conversely, using the same parameters on a domain four
times larger than in Fig. 6, the circular SW becomes larger
and survives longer. The remnants can still be identified at
t=1900 s inscd. Hence, the instability may be due to the
collision of the circular SW with itself, or, more generally,
from the interaction of convex and concave regions. The
time- series ofku131l for the solution insbd is similar to Fig.
6sfd, but the oscillations become even more irregular. This
simulationsup to t=2400 sd took 12 days on a 2.4 GHz Pen-
tium 4 machine with 512 MB RAM.

Hence, the system size must be chosen with care; for the
parameters considered hereL=0.635 mmsn=128d seems to
capture the relevant phenomena in acceptable computation
time.

F. Local fronts within clustered solutions

For PC and SWsat least away from irregular regimesd, the
time series forku131l and similar averaged quantities shows
2 maxima during sroughlyd one ODE-oscillation period,
while ku131l in SW has the same period asu131

ODE. Moreover,

FIG. 10. Nucleation and local fronts within clusters:sad andsbd
show againu131st , ·d for the solution from Fig. 8sad. scd showsu131

in the top left quarter of the solution from Fig. 6, see also Fig. 7. In
the first frames the location of cluster nuclei have been marked by
circles. Fromsad and scd we may estimate local front speedsc
<1.25310−3 cm s−1 andc<10−3 cm s−1, respectively.
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unlike PC and SW, PW may be describable by pure phase
models. This is why so far we made a clear distinction be-
tween clustered solutionssPC and SWd and PW.

Now we show that the distinction is more gradual, which
is important for the comparison of the numerical results with
experimental data in Sec. IV. Strictly speaking, “cluster of
equal phase” means that the cluster appears “all at once” in
the greyscale plots used here. This is not the case. Instead,
using smaller time intervals between the frames for the grey-
scale plots, we now point out that there arecluster nuclei
from which the cluster appear vialocal front dynamics. In
fact, this can already be seen in 1D since the front sides of
the clusters are not straight lines but bendedfe.g., Figs. 2sbd
and 2scdg. Now we want to give more quantitative state-
ments.

In Fig. 10sad we return to the fourth frame in Fig. 8. Note
that this is in a transient regime. However, this is similar to
the experimental situation since there it is difficult to main-
tain constant conditions for the system over long times: typi-
cally the partial pressures slowly drift in the experiments, for
instance due to adsorption at the chamber walls. Moreover,
in experiments often temperature ramps are used. In the first
frame insad st=2590 sd a cluster nucleus has been marked by
a grey circle. From here a cluster grows which att=2620 s
has reached roughly the center of the domain by a local
front. The distance between the nucleus att=2590 s and the
front position att=2620 s is about 7530.005 mm. From this
we may estimate a front speedc<1.25310−3 cm s−1. Simi-
lar cluster nuclei and local front dynamics can be identified
in the other frames insad. These give rather larger estimates
for the local front speeds.

In sbd we illustrate the same mechanism in the fully de-
veloped clustering regime. Now the time difference between
the appearance of the cluster nucleusst=4355 sd and the full
appearance of the clusterst=4365 sd is much smaller. Here
the estimate of a local front makes less sense. For the
irregular solution from Fig. 6 the local front dynamics

can be seen for all time. Fromscd we estimatec<s20
30.005 mmd / s10 sd=10−3 cm s−1 for the local front speed.

IV. DISCUSSION AND CONCLUSIONS

The dependence of the models2d on the diffusion energies
and temperature can be summarized as follows:

sad For the diffusion energies in Table I we obtain PC
solutions, provided the initial perturbations of a homogenous
surface near the periodic ODE orbit are large enough.

sbd Decreasing diffusion ofuNO
131 and/or increasing diffu-

sion of uNO
hex first introduces and then decreases a spatial

length scale for the clusters, i.e., it shifts the system to the
SW regime.

scd One key ingredient of both PC and SW is the rela-
tively fast diffusion ofuNH3

131 anduH
131. For slower diffusion of

uNH3

131, uH
131 no clustering appears but phase waves. This is in

contrast to CO+O2 on Pts110d f10–13,23–26g where cluster-
ing has only been reported under a global coupling through
the gas phase. This global coupling is replaced here by the
fast diffusion ofuNH3

131, uH
131.

sdd Temperature dependence: at lower temperatures, BO
and PW dominate over PC and SW, while at higher tempera-
tures clustering dominates over BO and PW. In the clustering
regime, the spatial scale of SW increasessdecreasesd with
decreasingsincreasingd temperature.

These overall features have been confirmed in a number
of further simulations not presented here; see also Ref.f34g.
They are as in 1Df9g. The new feature in 2Dare curvature
effects. In particular, these can lead to large amplitude oscil-
lations of the cluster boundariessFig. 3d, to a failure of phase
balancingfFigs. 8 and 9sadg, and, on sufficiently large do-
mains, to irregular standing wavesfFigs. 6 and 9scdg.

Mathematical explanations for the observed solutions are
difficult even for the basic phenomena in 1D, like the clus-
tering as such and the different roles of the diffusion con-
stants. In particular, it is unclear if the 1D problem can be

TABLE II. Rate constants for the NO+NH3 reactions on Pts100d.

Reaction step Param.
ni

ss−1d
Ei

skcal3mol−1d
Value at 420 K

ss−1d

NO desorption 131 k1 1.731014 37.0a 9.7310−6

NO dissociation 131 k2 2.031015 28.5 3.0

NO trapping on 131 k3 2.23104 8.0 1.52

NO desorption hex k4 4.031012 26.0 0.12

NH3 desorption 131 k5 1.03109 18.0a 0.43

NH3 dissociation 131 k6 1.031015 27.5 4.98

NH3 formation 131 k7 1.031010 16.0 47.7

H2O formation 131 k8 1.031013 13.0 1.733106

N2 desorption 131 k9 1.331012 19.0 1.703102

H2 desorption 131 k10 8.031012 23.0 8.72

Transition 131→hex k11 2.531011 25.0 2.48310−2

aFor zero local coverage, see Eq.sA2d.
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analyzed using amplitude equations for a wave bifurcation
f20–22,39g, since here we are far away from a bifurcation
point with harmonic time dependence of the bifurcating so-
lutions. In 2D these problems become worse, and at present
we have no explanation what causes, for instance, the oscil-
lations of the cluster boundaries or the instability of the cir-
cular standing wave.

On the other hand, it remains to relate the results for the
models2d to the experimental results reported in Refs.f7,6g.
Clustering makes the oscillations of averaged quantities
more harmonic compared to the ODE oscillations and also
reduces the period and amplitude by a factor of roughly 2. As
a result, the time series for the averaged quantities from the
simulation agree better with experimental data; for instance,
the period in the ODE oscillations is too large by a factor of
roughly 2 compared to experimentsRef. f7g, Fig. 7d which
always includes some averaging.

The PEEM images in Ref.f6g show snapshots of various
types of patterns obtained at different experimental condi-
tions. The PEEM signal measures the difference in local
work function which is a function of all the adsorbed species,
where roughly black correspond to NOad and Oad, white to
NH3, and gray to the hex phase of the surface, i.e., to large
1−u131. Here we choseu131 as diagnostic, but since the
remaining variables can then roughly be read from the ODE
orbit a comparison can be made.

The patterns shown in Ref.f6g have distinctive spatial
scales which are on the order of 10−2 cm down to 10−3 cm.
In some situations, different patternsssuch as spiral waves
and target patternsd on different spatial scales coexist. Irregu-
lar patterns on small spatial scales are also observed. In
these, the overall reaction rates become almost stationary,
while local averages still showsirregulard oscillationssf6g,
Figs. 5 and 6d. Proper phase clustering with the splitting of
the specimen into only two clusters as in Sec. III A was not
observed in Ref.f6g. This might be due to the fact that rather
few parameter ranges were studied with spatially resolved
methods. Moreover, any real surface contains macroscopic
defects like scratches that may destroy large patterns. In any

case, from the available data we conclude that the estimates
in Table I for the diffusion energies do not reproduce the

experimental results. Instead, the diffusion energiesEW

=s30,22,15,18d used in Figs. 6–8 yield a better agreement
with experiment, though the temperature dependence of the
model is still wrong, see later.

In Ref. f6g, Fig. 2 a sequence of PEEM images is used to
explain via front dynamics the formation of “adsorbate is-
lands,” which correspond to phase clusters in our terminol-
ogy. This agrees qualitatively with the local front dynamics
in Sec. III F, but the front speedss0.5310−4 cm/s and 1.1
310−4 cm/s for two different types of fronts in the experi-
mentd are one order of magnitude lower than in Fig. 10. Of
course, we can decrease the front speed in the simulations by
a factora=1/10 by simply changing the spatial scale, i.e.,
multiplying all diffusion constants uniformly bya2. How-
ever, this would yield some trade-off between the correct
spatial scale for the patterns and the front speed.

Finally, the temperature dependences of the models2d and
of the experiment are reversed. In the latter, irregular small
scale patterns are observed at the lower end of the tempera-
ture window fTmin,Tmaxg for kinetic oscillations, while for
intermediate temperatures larger scale regular spatial struc-
tures dominate, and bulk oscillations nearTmax. In the model
s2d it is the other way round. However, the bulk oscillations
at highT and the gradual failure of long range synchroniza-
tion at lowerT in the experiment are attributed to the global
gas-phase coupling and its breakdown at lowerT. As already
said, such a global gas-phase coupling is not included ins2d,
and it remains to be seen if some of the shortcomings ofs2d
can resolved by including it.
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TABLE III. Temperature independent parameters.

Description Param. Value

NO-adsorption flux 131, hex FNO 2.213105smbar−1 s−1d
NH3-adsorption flux 131 FNH3

2.843105smbar−1 s−1d
H2-adsorption flux 131 FH2

8.283105smbar−1 s−1d
Inhibition coverage of NO for NO dissociation uNO

inh 0.61

Inhibition coverage of O for NO dissociation uO
inh 0.399

Critical coverage of NO for the 131→hex phase transf. uNO
crit 0.3

Critical coverage of NO for the 131→hex phase transf. uO
crit 0.4

Coverage for island growth in the hex→131 phase
transf.

ugrow
131 0.5

Amount of surface defects udef 1.0310−4

Partial pressuresstunable, but kept fixed hered pNO 1.1310−6 mbar

pNH3
4.7310−6 mbar
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APPENDIX: THE ODE

To make the paper somewhat self contained, we give the ODEs1d ssee Refs.f7,8g for the chemical meanings and
discussiond;

d

dt
uNO

131 = FNOpNOsu131 − uNO
131 − 4uNH3

131d − k1uNO
131 − k2

uNO
131uempty

131

u131
+ k3uNO

hexu131, sA1ad

d

dt
uNO

hex= FNOpNOsuhex− uNO
hexd − k3uNO

hexu131 − k4uNO
hex, sA1bd

d

dt
u131 =5 S d

dt
uNO

131D/ugrow
131 if

d

dt
uNO

131 . 0 anduNO
131 ù ugrow

131u131 andu131 , 1,

− k11su131 − udef
hexds1 − cd if u131 . udef

hex andc , 1,

0 otherwise,
6 sA1cd

d

dt
uNH3

131 = FNH3
pNH3

su131 − 3uNH3

131 − 1.6uNO
131d − k5uNH3

131 − k6

uNH3

131fu131 − uH
131 − 2.5suO

131 + uN
131dg

u131
+ k7

uN
131uH

131

u131
, sA1dd

d

dt
uO

131 = k2
uNO

131uempty
131

u131
− k8

uO
131uN

131

u131
, sA1ed

d

dt
uN

131 = k2
uNO

131uempty
131

u131
+ k6

uNH3

131fu131 − uH
131 − 2.5suO

131 + uN
131dg

u131
− k7

uN
131uH

131

u131
− k9

suN
131d2

u131
, sA1fd

d

dt
uH

131 = FH2
pH2

fu131 − uH
131 − 2.5suO

131 + uN
131dg2

u131
+ 3k6

uNH3

131fu131 − uH
131 − 2.5suO

131 + uN
131dg

u131
− 3k7

uN
131uH

131

u131
− 2k8

uO
131uH

131

u131

− k10
suH

131d2

u131
. sA1gd

The three conditions on the right hand side ofsA1cd have to
be read top down and the first one fulfilled determines the
right hand side. The rate constantsk1, . . . ,k11 are determined
by Arrhenius-lawki =nie

−Ei/RT, where theni and most of the
Ei are constants, given in Table II. ForE1 andE5 coverage-
dependent nonlinear corrections are used in the form

E1 = E1
0 − 24suNO

131/u131d2, E5 = E5
0 − 30suNH3

131/u131d2.

sA2d

The auxiliary functions insA1d are given by

uempty
131 = maxFSu131 −

uNO
131

uNO
inh −

uO
131

uO
inh D,0G

+ maxfsudef
131 − uO

131d,0g,

c = SuNO
131

uNO
crit +

uO
131

uO
crit DY u131 ,u131 + uhex= 1,

udef
131 = u131udef, udef

hex= uhexudef,

and the further parameters are given in Table III.
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